4.6 Article

Electrochemical Analysis of H2O2 and Nitrite Using Copper Nanoparticles/Poly(o-phenylenediamine) Film Modified Glassy Carbon Electrode

Journal

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
Volume 156, Issue 7, Pages E118-E123

Publisher

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.3129604

Keywords

-

Funding

  1. Ministry of Education
  2. National Science Council of Taiwan

Ask authors/readers for more resources

Copper nanoparticles (Cu-NPs) have been electrochemically synthesized onto a poly (o-phenylenediamine) (PoPD-) coated glassy carbon electrode (GCE). Electrochemical properties and surface characterizations were studied using cyclic voltammetry, atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Cyclic voltammetry, AFM, SEM, and XRD confirmed the presence of Cu-NPs on the electrode surface. Cu-NPs are firmly stabilized by surface attachment of the PoPD functionality that can be attached to the electrode surface, thus becoming an integral part of the polymer backbone. The Cu-NPs-polymer film-coated GCE (Cu-NPs/PoPD/GCE) showed excellent electrocatalytic activity toward the reduction of hydrogen peroxide (H2O2) and nitrite (NO2-). Amperometry was carried out to determine the concentration of H2O2 and NO2- at -0.3 V. The dependence of the current response on the H2O2 concentration was explored under neutral conditions, and an excellent linear concentration range from 1.0 X 10(-6) to 1.0 X 10(-3) M was found. The Cu-NPs/PoPD/GCE allows highly sensitive, low working potential, stable, and fast amperometric sensing of H2O2 and NO2-. This is promising for the future development of nonenzymatic sensors. The real-sample analysis of commercial H2O2 samples was performed using the proposed method, and the obtained results are satisfactory. (C) 2009 The Electrochemical Society. [DOI: 10.1149/1.3129604] All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available