4.4 Article

Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model

Journal

JOURNAL OF THE ATMOSPHERIC SCIENCES
Volume 66, Issue 12, Pages 3707-3720

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009JAS3165.1

Keywords

-

Funding

  1. Directorate For Geosciences
  2. Div Atmospheric & Geospace Sciences [0808831] Funding Source: National Science Foundation

Ask authors/readers for more resources

An idealized atmospheric model is employed to quantify the strength of the eddy feedback and the persistence of the zonal index. The strength of the surface frictional damping on the zonal index is varied, and an external zonal momentum forcing is included to compensate for the momentum change associated with the friction change such that the climatological jet latitude and shape are unchanged. The model can generate a nearly identical climatology and leading mode of the zonal mean zonal wind for different frictional damping rates, except when the jet undergoes a regime transition. For those experiments without a regime transition, as the surface friction is increased, the strength of eddy feedback is enhanced but the zonal index becomes less persistent. A simple feedback model suggests that the e-folding decorrelation time scale of the zonal index can be determined by the frictional damping rate and the strength of eddy feedback. The strength of eddy feedback is found to be related to the instantaneous vertical wind shears near the surface controlled by the frictional damping. Furthermore, the climate response to an external zonal torque is proportional to the decorrelation time scale, although the simple prediction used here overestimates the climate response by a factor of 2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available