4.5 Article

Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1007/s13361-012-0352-8

Keywords

Surface acoustic wave nebulization; Internal energy; Ionization method; ESI

Funding

  1. National Institutes of Health [1U54 AI57141-01]
  2. NSF [CHE-0342956, CHE-1055132]
  3. University of Washington
  4. CEA-Eurotalent [PCOFUND-GA-2008-228664]

Ask authors/readers for more resources

Surface acoustic wave nebulization (SAWN) has recently been reported as a novel method to transfer non-volatile analytes directly from solution to the gas phase for mass spectrometric analysis. Here we present a comparison of the survival yield of SAWN versus electrospray ionization (ESI) produced ions. A series of substituted benzylpyridinium (BzPy) compounds were utilized to measure ion survival yield from which ion energetics were inferred. We also estimated bond dissociation energies using higher level quantum chemical calculations than previously reported for BzPy ions. Additionally, the effects on BzPy precursor ion survival of SAWN operational parameters such as inlet capillary temperature and solution flow-rate were investigated. Under all conditions tested, SAWN-generated BzPy ions displayed a higher tendency for survival and thus have lower internal energies than those formed by ESI.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available