4.5 Article

N-Centered Odd-Electron Ions Formation from Collision-Induced Dissociation of Electrospray Ionization Generated Even-Electron Ions: Single Electron Transfer via Ion/Neutral Complex in the Fragmentation of Protonated N,N'-Dibenzylpiperazines and Protonated N-Benzylpiperazines

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1007/s13361-011-0176-y

Keywords

Single Electron Transfer; Odd-Electron Ion; Even-Electron Ion; Electrospray Ionization Mass Spectrometry; Ion/Neutral Complex; N-Benzylpiperazine

Funding

  1. National Science Foundation of China [21025207, 20975092]

Ask authors/readers for more resources

Single electron transfer (SET) via ion/neutral complex (INC) was proposed and confirmed to be the key step in the formation of N-centered odd-electron ions from fragmentation of protonated even-electron ions in the present study. Upon collisional activation, the model compounds, protonated N,N'-dibenzylpiperazine and protonated N-benzylpiperazines initially dissociated to form intermediate INCs consisting of N-benzylpiperazine (or piperazine) and benzyl cation. In these ion/neutral complexes, SET reaction and direct separation as well as other reactions were observed and characterized experimentally and theoretically. Density functional theory calculations demonstrated that the energy requirement for homolysis of the precursor ion was so large that it could not be achieved, whereas the heterolytic dissociation followed by electron transfer via INC was energetically preferred. The SET process occurred only when the radical products were more stable than the separation products. The energy barrier for SET in the compounds studied was roughly estimated by comparison with other competing reactions. When the INC contained electron donor with lower ionization energy and electron acceptor with higher electron affinity, the SET reaction was more efficient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available