4.5 Article

The Detection of Glycosphingolipids in Brain Tissue Sections by Imaging Mass Spectrometry Using Gold Nanoparticles

Journal

JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
Volume 21, Issue 11, Pages 1940-1943

Publisher

SPRINGER
DOI: 10.1016/j.jasms.2010.08.002

Keywords

-

Funding

  1. Japan Science and Technology Agency

Ask authors/readers for more resources

Glycosphingolipids (GSLs) are amphiphilic molecules consisting of a hydrophilic carbohydrate chain and a hydrophobic ceramide moiety. They appear to be involved primarily in biological processes such as cell proliferation, differentiation, and signaling. To investigate the mechanism of brain function in more detail, a more highly sensitive method that would reveal the GSL distribution in the brain is required. In this report, we describe a simple and efficient method for mapping the distribution and localization of GSLs present in mouse brain sections using nanoparticle-assisted laser desorption/ionization imaging mass spectrometry (IMS). We have developed and tested gold nanoparticles (AuNPs) as a new matrix to maximize the detection of GSLs. A matrix of AuNPs modified with alkylamine was used to detect various GSLs, such as minor molecular species of sulfatides and gangliosides, in mouse brain sections; these GSLs were hardly detected using 2,5-dihydroxybenzoic acid (DHB), which is the conventional matrix for GSLs. We achieved approximately 20 times more sensitive detection of GSLs using AuNPs compared to a DHB matrix. We believe that our new approach using AuNPs in IMS could lead to a new strategy for analyzing basic biological mechanisms and several diseases through the distribution of minor GSLs. (J Am Soc Mass Spectrom 2010, 21, 1940-1943) (C) 2010 American Society for Mass Spectrometry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available