4.5 Article

Multiple-Reaction Monitoring Liquid Chromatography Mass Spectrometry for Monosaccharide Compositional Analysis of Glycoproteins

Journal

Publisher

AMER CHEMICAL SOC
DOI: 10.1016/j.jasms.2009.02.022

Keywords

-

Funding

  1. Eli Lilly Endowment
  2. National Center for Research Resources, a component of the National Institute of Health (NIH+NCRR) [RR018942]

Ask authors/readers for more resources

A simple, sensitive, and rapid quantitative LC-MS/MS assay was designed for the simultaneous quantification of free and glycoprotein bound monosaccharides using a multiple reaction monitoring (MRM) approach. This study represents the first example of using LC-MS/MS methods to simultaneously quantify all common glycoprotein monosaccharides, including neutral and acidic monosaccharides. Sialic acids and reduced forms of neutral monosaccharides are efficiently separated using a porous graphitized carbon column. Neutral monosaccharide molecules are detected as their alditol acetate anion adducts [M + CH3CO2](-) using electrospray ionization in negative ion MRM mode, while sialic acids are detected as deprotonated ions [M - H](-). The new method exhibits very high sensitivity to carbohydrates with limits of detection as low as 1 pg for glucose, galactose, and mannose, and below 10 pg for other monosaccharides. The linearity of the described approach spans over three orders of magnitudes (pg to ng). The method effectively quantified monosaccharides originating from as little as 1 mu g of fetuin, ribonuclease B, peroxidase, and alpha(1)-acid glycoprotein human (AGP) with results consistent with literature values and with independent CE-LIF measurements. The method is robust, rapid, and highly sensitive. It does not require derivatization or postcolumn addition of reagents. (J Am Soc Mass Spectrom 2009, 20, 1224-1234) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available