4.3 Article

Evaluating the Transferability of FT-NIR Calibration Models for Fatty Acid Determination of Edible Fats and Oils Among Five Same-make Spectrometers Using Transmission or Transflection Modes with Different Pathlengths

Journal

JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY
Volume 89, Issue 12, Pages 2143-2154

Publisher

WILEY
DOI: 10.1007/s11746-012-2116-9

Keywords

FT-NIR; Rapid fatty acid determination; Transferability; Calibration models; trans Fatty acids; Saturated fatty acids

Ask authors/readers for more resources

Fourier transform near-infrared (FT-NIR) spectroscopy in conjunction with partial least squares 1 (PLS1) calibration models was previously reported to be an alternative method to GC for the rapid determination of the fatty acid (FA) composition of fats and oils. These calibration models had been developed based on accurate GC data (primary reference method) and observed FT-NIR spectra. In the present three-laboratory limited collaborative study, the transferability of these pre-developed calibration models to four other FT-NIR spectrometers from the same manufacturer was evaluated. Six samples were selected that provided a wide range of FA contents. Our results indicate that these models were successfully transferable to spectrometers operating in the transflection mode with 2- or 4-mm pathlength fiber optic probes or in the transmission mode using 5-mm, but not 8-mm, outer diameter tubes. The predicted FA composition fell within the statistically accepted limits of agreement between FT-NIR and GC. The FT-NIR precision data were consistent with those reported in a published GC collaborative study. The application of FT-NIR to the determination of the total content of SFA, trans FA, MUFA, and PUFA is cost-effective and potentially suitable for the rapid screening of commercial products for compliance verification with labeling regulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available