4.3 Article

Enzymatic synthesis of biodiesel from transesterification reactions of vegetable oils and short chain alcohols

Journal

JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY
Volume 85, Issue 10, Pages 925-930

Publisher

WILEY
DOI: 10.1007/s11746-008-1284-0

Keywords

biodiesel; lipases; alcoholysis; vegetable oil; enzyme stability; organic solvents

Funding

  1. CNPq
  2. CAPES

Ask authors/readers for more resources

Biodiesel synthesis by alcoholysis of three vegetable oils (soybean, sunflower and rice bran) catalyzed by three commercial lipases (Novozym 435, Lipozyme TL-IM and Lipozyme RM-IM), and the optimization of the enzymes stability over repeated batches is described. The effects of the molar ratio of alcohol to oil and the reaction temperature with methanol, ethanol, propanol and butanol were also studied. All three enzymes displayed similar reaction kinetics with all three oils and no significant differences were observed. However, each lipase displayed the highest alcoholysis activity with a different alcohol. Novozym 435 presented higher activity in methanolysis, at a 5:1 methanol:oil molar ratio; Lipozyme TL-IM presented higher activity in ethanolysis, at a 7:1 ethanol:oil molar ratio; and Lipozyme RM-IM presented higher activity in butanolysis, at a 9:1 butanol:oil molar ratio. The optimal temperature was in the range of 30-35 degrees C for all lipases. The assessment of enzyme stability over repeated batches was carried out by washing the immobilized enzymes with different solvents (n-hexane, water, ethanol, or propanol) after each batch. When washing with n-hexane, approximately 90% of the enzyme activity remained after seven synthesis cycles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available