4.6 Article

Material Properties and Constitutive Modeling of Infant Porcine Cerebellum Tissue in Tension at High Strain Rate

Journal

PLOS ONE
Volume 10, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0123506

Keywords

-

Funding

  1. National Natural Science Foundation of China [1271006, 31470913]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

Ask authors/readers for more resources

Background The mechanical characterization of infant porcine cerebellum tissue in tension at high strain rate is crucial for modeling traumatic cerebellum injury, which is in turn helpful for understanding the biomechanics of such injuries suffered in traffic accidents. Material and Method In this study, the infant porcine cerebellum tissue was given three loading velocities, ie, 2s(-1), 20s(-1) and 100s(-1) with up to 30% strain to investigate the tensile properties. At least six tensile tests for each strain rate were validly performed. Fung, Gent, Ogden and exponential models were applied to fit the constitutive equations, so as to obtain material parameters from the experimental data. Results The Lagrange stress of infant porcine cerebellum tissue in tension appeared to be no more than 3000Pa at each loading velocity. More specifically, the Lagrange stress at 30% strain was (393.7 +/- 84.4) Pa, (928.3 +/- 56.3) Pa and (2582.4 +/- 282.2) Pa at strain rates of 2s(-1), 20s(-1) and 100s(-1), respectively. Fung (0.833 <= R-2 <= 0.924), Gent (0.797 <= R-2 <= 0.875), Ogden (0.859 <= R-2 <= 0.944) and exponential (0.930 <= R-2 <= 0.972) models provided excellent fitting to experimental data up to 30% strain. Conclusions The infant cerebellum tissue shows a stiffer response with increase of the loading speed, indicating a strong strain-rate sensitivity. This study will enrich the knowledge on the material properties of infant brain tissue, which may augment the biofidelity of finite element model of human pediatric cerebellum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available