4.6 Article

Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs

Journal

PLOS ONE
Volume 10, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0140569

Keywords

-

Funding

  1. National Institute of General Medical Sciences (US) [R01GM104098, R01GM098449, R01GM077402]
  2. Nancy Kaehr Chair in Research

Ask authors/readers for more resources

The SLC22 family includes organic anion transporters (OATs), organic cation transporters (OCTs) and organic carnitine and zwitterion transporters (OCTNs). These are often referred to as drug transporters even though they interact with many endogenous metabolites and signaling molecules (Nigam, S.K., Nature Reviews Drug Discovery, 14: 29-44, 2015). Phylogenetic analysis of SLC22 supports the view that these transporters may have evolved over 450 million years ago. Many OAT members were found to appear after a major expansion of the SLC22 family in mammals, suggesting a physiological and/or toxicological role during the mammalian radiation. Putative SLC22 orthologs exist in worms, sea urchins, flies, and ciona. At least six groups of SLC22 exist. OATs and OCTs form two Major clades of SLC22, within which (apart from Oat and Oct subclades), there are also clear Oat-like, Octn, and Oct-related subclades, as well as a distantly related group we term Oat-related (which may have different functions). Based on available data, it is arguable whether SLC22A18, which is related to bacterial drug-proton antiporters, should be assigned to SLC22. Disease-causing mutations, single nucleotide polymorphisms (SNPs) and other functionally analyzed mutations in OAT1, OAT3, URAT1, OCT1, OCT2, OCTN1, and OCTN2 map to the first extracellular domain, the large central intracellular domain, and transmembrane domains 9 and 10. These regions are highly conserved within subclades, but not between subclades, and may be necessary for SLC22 transporter function and functional diversification. Our results not only link function to evolutionarily conserved motifs but indicate the need for a revised sub-classification of SLC22.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available