4.8 Article

Dynamic Nuclear Polarization-Enhanced NMR on Aligned Lipid Bilayers at Ambient Temperature

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 44, Pages 15533-15536

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja509799s

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [GL 307/4-1]

Ask authors/readers for more resources

Dynamic nuclear polarization (DNP)-enhanced solid-state NMR spectroscopy has been shown to hold great potential for functional studies of membrane proteins at low temperatures due to its great sensitivity improvement. There are, however, numerous applications for which experiments at ambient temperature are desirable and which would also benefit from DNP signal enhancement. Here, we demonstrate as a proof of concept that a significant signal increase for lipid bilayers under room-temperature conditions can be achieved by utilizing the Overhauser effect. Experiments were carried out on aligned bilayers at 400 MHz/263 GHz using a stripline structure combined with a Fabry-Perot microwave resonator. A signal enhancement of protons of up to -10 was observed. Our results demonstrate that Overhauser DNP at high field provides efficient polarization transfer within insoluble samples, which is driven by fast local molecular fluctuations. Furthermore, our experimental setup offers an attractive option for DNP-enhanced solid-state NMR on ordered membranes and provides a general perspective toward DNP at ambient temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available