4.8 Article

Reactivity and Chemoselectivity of Allenes in Rh(I)-Catalyzed Intermolecular (5+2) Cycloadditions with Vinylcyclopropanes: Allene-Mediated Rhodacycle Formation Can Poison Rh(I)-Catalyzed Cycloadditions

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 49, Pages 17273-17283

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja5098308

Keywords

-

Funding

  1. National Science Foundation [CHE- 1361104, CHE-1265956]
  2. National Institutes of Health [CA031845]
  3. NSF Graduate Research Fellowship
  4. NSF [OCI-1053575]
  5. Direct For Mathematical & Physical Scien [1361104] Funding Source: National Science Foundation
  6. Division Of Chemistry [1361104] Funding Source: National Science Foundation
  7. Division Of Chemistry
  8. Direct For Mathematical & Physical Scien [1265956] Funding Source: National Science Foundation

Ask authors/readers for more resources

Allenes are important 2 pi building blocks in organic synthesis and engage as 2-carbon components in many metal-catalyzed reactions. Wender and co-workers discovered that methyl substituents on the terminal allene double bond counterintuitively change the reactivities of allenes in [Rh(CO)(2)Cl](2)-catalyzed intermolecular (5 + 2) cycloadditions with vinylcyclopropanes (VCPs). More sterically encumbered allenes afford higher cycloadduct yields, and such effects are also observed in other Rh(I)-catalyzed intermolecular cycloadditions. Through density functional theory calculations (B3LYP and M06) and experiment, we explored this enigmatic reactivity and selectivity of allenes in [Rh(CO)(2)Cl](2)-catalyzed intermolecular (5 + 2) cycloadditions with VCPs. The apparent low reactivity of terminally unsubstituted allenes is associated with a competing allene dimerization that irreversibly sequesters rhodium. With terminally substituted allenes, steric repulsion between the terminal substituents significantly increases the barrier of allene dimerization while the barrier of the (5 + 2) cycloaddition is not affected, and thus the cycloaddition prevails. Computation has also revealed the origin of chemoselectivity in (5 + 2) cycloadditions with allene-ynes. Although simple allene and acetylene have similar reaction barriers, intermolecular (5 + 2) cycloadditions of allene-ynes occur exclusively at the terminal allene double bond. The terminal double bond is more reactive due to the enhanced d-pi* backdonation. At the same time, insertion of the internal double bond of an allene-yne has a higher barrier as it would break p conjugation. Substituted alkynes are more difficult to insert compared with acetylene, because of the steric repulsion from the additional substituents. This leads to the greater reactivity of the allene double bond relative to the alkynyl group in allene-ynes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available