4.8 Article

Combinatorialization of Fungal Polyketide Synthase-Peptide Synthetase Hybrid Proteins

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 51, Pages 17882-17890

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja511087p

Keywords

-

Funding

  1. NSF [0957791]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [0957791] Funding Source: National Science Foundation

Ask authors/readers for more resources

The programming of the fungal polyketide synthase (PKS) is quite complex, with a simple domain architecture leading to elaborate products. An additional level of complexity has been found within PKS-based pathways where the PKS is fused to a single module nonribosomal peptide synthetase (NRPS) to synthesize polyketides conjugated to amino acids. Here, we sought to understand the communication between these modules that enable correct formation of polyketide-peptide hybrid products. To do so, we fused together the genes that are responsible for forming five highly chemically diverse fungal natural products in a total of 57 different combinations, comprising 34 distinct module swaps. Gene fusions were formed with the idea of testing the connection and compatibility of the PKS and NRPS modules mediated by the acyl carrier protein (ACP), condensation (C) and ketoreductase (KR) domains. The resulting recombinant gene fusions were analyzed in a high-yielding expression platform to avail six new compounds, including the first successful fusion between a PKS and NRPS that make highly divergent products, and four previously reported molecules. Our results show that C domains are highly selective for a subset of substrates. We discovered that within the highly reducing (hr) PKS class, noncognate ACPs of closely related members complement PKS function. We intercepted a pre-Diels-Alder intermediate in lovastatin synthesis for the first time, shedding light on this canonical fungal biochemical reaction. The results of these experiments provide a set of ground rules for the successful engineering of hr-PKS and PKS-NRPS products in fungi.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available