4.8 Article

Effect of Metal Complexation on the Conductance of Single-Molecular Wires Measured at Room Temperature

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 23, Pages 8314-8322

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja5012417

Keywords

-

Funding

  1. EU [SAMSFERE-321739]
  2. EU (ERC)
  3. Spanish MINECO [MAT2011-22785, MAT2007-61584, CTQ2011-23862-C02-01]
  4. Generalidad Valenciana (Prometeo Programme of Excellence)
  5. Generalidad Valenciana (ISIC Programme of Excellence)
  6. Regional Generalitat de Catalunya Authority [2009SGR-1459]
  7. Spanish MICINN
  8. Conicyt-Chile

Ask authors/readers for more resources

The present work aims to give insight into the effect that metal coordination has on the room-temperature conductance of molecular wires. For that purpose, we have designed a family of rigid, highly conductive ligands functionalized with different terminations (acetylthiols, pyridines, and ethynyl groups), in which the conformational changes induced by metal coordination are negligible. The single-molecule conductance features of this series of molecular wires and their corresponding Cu(I) complexes have been measured in break-junction setups at room temperature. Experimental and theoretical data show that no matter the anchoring group, in all cases metal coordination leads to a shift toward lower energies of the ligand energy levels and a reduction of the HOMO-LUMO gap. However, electron-transport measurements carried out at room temperature revealed a variable metal coordination effect depending on the anchoring group: upon metal coordination, the molecular conductance of thiol and ethynyl derivatives decreased, whereas that of pyridine derivatives increased. These differences reside on the molecular levels implied in the conduction. According to quantum-mechanical calculations based on density functional theory methods, the ligand frontier orbital lying closer to the Fermi energy of the leads differs depending on the anchoring group. Thereby, the effect of metal coordination on molecular conductance observed for each anchoring could be explained in terms of the different energy alignments of the molecular orbitals within the gold Fermi level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available