4.8 Article

Mechanistic Insights into the Pd-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Multisubstituted Pyrroles: Understanding the Remarkable Regio- and Enantioselectivity

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 46, Pages 16251-16259

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja5080135

Keywords

-

Funding

  1. National Basic Research Program of China (973 Program) [2010CB833300]
  2. National Natural Science Foundation of China [21025209, 21121062, 21332009, 21302209]

Ask authors/readers for more resources

In this article we report a comprehensive density functional theory study on the Pd-catalyzed intermolecular asymmetric allylic dearomatization reactions of multisubstituted pyrroles. The calculated results are in line with the previous experimental observations (J. Am. Chem. Soc. 2014, 136, 6590), and the remarkable regio- and enantioselectivity are well explained. Of all the potential nudeophilic sites around the multisubstituted pyrrole ring, the reaction always occurs at the position where the HOMO of the molecule distributes most significantly. In contrast to the common view on the enantioselectivity of the Pd-catalyzed asymmetric allylic substitution reactions, we find that the steric interaction between the nucleophile and the chiral ligand does not have the dominating effect on the enantioselectivity of the reaction. Instead, the interaction between the allyl moiety and the incoming nucleophile plays an important role in the enantioselectivity-determining process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available