4.8 Article

Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 17, Pages 6348-6354

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja500984k

Keywords

-

Funding

  1. ANR [TRANCHANT ANR-2010-BLAN-1009-4, EnzHyd ANR-08-PANH-008]
  2. C'Nano Ile de France (project ElecTubes)
  3. ANR

Ask authors/readers for more resources

The development of innovative techniques for the functionalization of carbon nanotubes that preserve their exceptional quality, while robustly enriching their properties, is a central issue for their integration in applications. In this work, we describe the formation of a covalent network of porphyrins around MWNT surfaces. The approach is based on the adsorption of cobalt(II) meso-tetraethynylporphyrins on the nanotube sidewalls followed by the dimerization of the triple bonds via Hay-coupling; during the reaction, the nanotube acts as a template for the formation of the polymeric layer. The material shows an increased stability resulting from the cooperative effect of the multiple pi-stacking interactions between the porphyrins and the nanotube and by the covalent links between the porphyrins. The nanotube hybrids were fully characterized and tested as the supported catalyst for the oxygen reduction reaction (ORR) in a series of electrochemical measurements under. acidic conditions. Compared to similar systems in which monomeric porphyrins are simply physisorbed, MWNT-CoP hybrids showed a higher ORR activity associated with a number of exchanged electrons close to four, corresponding to the complete reduction of oxygen into water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available