4.8 Article

Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 136, Issue 38, Pages 13249-13256

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja505556s

Keywords

-

Funding

  1. Leona M. and Harry B. Helmsley Charitable Trust
  2. Israel Ministry of Science's Tashtiot
  3. Weizmann-U.K. Joint Research Program

Ask authors/readers for more resources

Hybrid organic/lead halide perovskites are promising materials for solar cell fabrication, resulting in efficiencies up to 18%. The most commonly studied perovskites are CH3NH3PbI3 and CH3NH3PbI3-xClx where x is small. Importantly, in the latter system, the presence of chloride ion source in the starting solutions used for the perovskite deposition results in a strong increase in the overall charge diffusion length. In this work we investigate the crystallization parameters relevant to fabrication of perovskite materials based on CH(3)NH(3)Pbl(3) and CH3NH3PbBr3. We find that the addition of PbCl2 to the solutions used in the perovskite synthesis has a remarkable effect on the end product, because PbCl2 nanocrystals are present during the fabrication process, acting as heterogeneous nucleation sites for the formation of perovskite crystals in solution. We base this conclusion on SEM studies, synthesis of perovskite single crystals, and on cryo-TEM imaging of the frozen mother liquid. Our studies also included the effect of different substrates and substrate temperatures on the perovskite nucleation efficiency. In view of our findings, we optimized the procedures for solar cells based on lead bromide perovsldte, resulting in 5.4% efficiency and V-oc of 1.24 V, improving the performance in this class of devices. Insights gained from understanding the hybrid perovskite crystallization process can aid in rational design of the polycrystalline absorber films, leading to their enhanced performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available