4.8 Article

Fluorine Substituents Reduce Charge Recombination and Drive Structure and Morphology Development in Polymer Solar Cells

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 5, Pages 1806-1815

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja309289u

Keywords

-

Funding

  1. NSF CAREER Award [DMR-0954280]
  2. Office of Naval Research [N000141110235]
  3. UNC EFRC: Center for Solar Fuels, an Energy Frontier Research Center
  4. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001011]
  5. DOE, OS, BES, MSE [DE-FG02-98ER45737]
  6. DOE [DE-AC02-05CH1123]
  7. UNC SERC (Solar Energy Research Center Instrumentation Facility)
  8. U.S. Department of Energy Office of Energy Efficiency & Renewable Energy [DE-EE0003188]
  9. Direct For Mathematical & Physical Scien
  10. Division Of Materials Research [0954280] Funding Source: National Science Foundation

Ask authors/readers for more resources

Three structurally identical polymers, except for the number of fluorine substitutions (0, 1, or 2) on the repeat unit (BnDT-DTBT), are investigated in detail, to further understand the impact of these fluorine atoms on open circuit voltage (V-oc), short circuit current (J(sc)), and fill factor (FF) of related solar cells. While the enhanced V-oc can be ascribed to a lower HOMO level of the polymer by adding more fluorine substituents, the improvement in J(sc) and FF are likely due to suppressed charge recombination. While the reduced bimolecular recombination with raising fluorine concentration is confirmed by variable light intensity studies, a plausibly suppressed geminate recombination is implied by the significantly increased change of dipole moment between the ground and excited states (Delta mu(ge)) for these polymers as the number of fluorine substituents increases. Moreover, the 2F polymer (PBnDT-DTffBT) exhibits significantly more scattering in the in-plane lamellar stacking and out-of-plane pi-pi stacking directions, observed with GIWAXS. This indicates that the addition of fluorine leads to a more face-on polymer crystallite orientation with respect to the substrate, which could contribute to the suppressed charge recombination. R-SoXS also reveals that PBnDT-DTffBT has larger and purer polymer/fullerene domains. The higher domain purity is correlated with an observed decrease in PCBM miscibility in polymer, which drops from 21% (PBnDT-DTBT) to 12% (PBnDT-DTffBT). The disclosed fluorine impact not only explains the efficiency increase from 4% of PBnDT-DTBT (0F) to 7% with PBnDT-DTffBT (2F) but also suggests fluorine substitution should be generally considered in the future design of new polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available