4.8 Article

Functional Near Infrared-Emitting Cr3+/Pr3+ Co-Doped Zinc Gallogermanate Persistent Luminescent Nanoparticles with Superlong Afterglow for in Vivo Targeted Bioimaging

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 38, Pages 14125-14133

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja404243v

Keywords

-

Funding

  1. National Basic Research Program of China [2011CB707703]
  2. National Natural Science Foundation of China [21275079, 20935001]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Near infrared (NIR)-emitting persistent luminescent nanoparticles (PLNPs) have great potential for in vivo bioimaging with the advantages of no need for in situ excitation, high signal-to-noise ratio, and deep tissue penetration. However, functional NIR-emitting PLNPs with long afterglow for long-term in vivo imaging are lacking. Here, we show the synthesis of NIR-emitting long-persistent luminescent nanoparticles (LPLNPs) Zn2.94Ga1.96Ge2O10:Cr3+,Pr3+ by a citrate sol-gel method in combination with a subsequent reducing atmosphere-free calcination. The persistent luminescence of the LPLNPs is significantly improved via codoping Pr3+/Cr3+ and creating suitable Zn deficiency in zinc gallogermanate. The LPLNP powder exhibits bright NIR luminescence in the biological transparency window with a superlong afterglow time of over 15 days. A persistent energy transfer between host and Cr3+ ion in the LPLNPs is observed and its mechanism is discussed. PEGylation greatly improves the biocompatibility and water solubility of the LPLNPs. Further bioconjugation with c(RGDyK) peptide makes the LPLNPs promising for long-term in vivo targeted tumor imaging with low toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available