4.8 Article

Enhancing Catalytic Performance of Palladium in Gold and Palladium Alloy Nanoparticles for Organic Synthesis Reactions through Visible Light Irradiation at Ambient Temperatures

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 15, Pages 5793-5801

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja400527a

Keywords

-

Funding

  1. Australia Research Council [ARC DP110104990]

Ask authors/readers for more resources

The intrinsic catalytic activity of palladium (Pd) is significantly enhanced in gold (Au)-Pd alloy nanoparticles (NPs) under visible light irradiation at ambient temperatures. The alloy NPs strongly absorb light and efficiently enhance the conversion of several reactions, including Suzuki-Miyaura cross coupling, oxidative addition of benzylamine, selective oxidation of aromatic alcohols to corresponding aldehydes and ketones, and phenol oxidation. The Au/Pd molar ratio of the alloy NPs has an important impact on performance of the catalysts since it determines both the electronic heterogeneity and the distribution of Pd sites at the NP surface, with these two factors playing key roles in the catalytic activity. Irradiating with light produces an even more profound enhancement in the catalytic performance of the NPs. For example, the best conversion rate achieved thermally at 30 degrees C for Suzuki-Miyaura cross coupling was 37% at a Au/Pd ratio of 1:1.86, while under light illumination the yield increased to 96% under the same conditions. The catalytic activity of the alloy NPs depends on the intensity and wavelength of incident light. Light absorption due to the Localized Surface Plasmon Resonance of gold nanocrystals plays an important role in enhancing catalyst performance. We believe that the conduction electrons of the NPs gain the light absorbed energy producing energetic electrons at the surface Pd sites, which enhances the sites' intrinsic catalytic ability. These findings provide useful guidelines for designing efficient catalysts composed of alloys of a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available