4.8 Article

Charge Photogeneration in Donor-Acceptor Conjugated Materials: Influence of Excess Excitation Energy and Chain Length

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 11, Pages 4282-4290

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja309252a

Keywords

-

Funding

  1. DFG [SPP1355, GRK 1464]
  2. Nanosystems Initiative Munich (NIM)
  3. Bavarian Ministry for Science through the initiative Solar Technologies Go Hybrid (SolTech)
  4. European Community Access to Research Infrastructure Action [RII3-CT-2003-506350]
  5. PRIN Project JKBBK4

Ask authors/readers for more resources

We investigate the role of excess excitation energy on the nature of photoexcitations in donor-acceptor pi-conjugated materials. We compare the polymer poly(2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[1,2-b;3,4-b']dithiophene)-4,7-benzo[2,1,3]thiadiazole) (PCPDTBT) and a short oligomer with identical constituents at different excitation wavelengths, from the near-infrared up to the ultraviolet spectral region. Ultrafast spectroscopic measurements clearly show an increased polaron pair yield for higher excess energies directly after photoexcitation when compared to the exciton population. This effect, already observable in the polymer, is even more pronounced for the shorter oligomer. Supported by quantum chemical simulations, we show that excitation in high-energy states generates electron and hole wave functions with reduced overlap, which likely act as precursors for the polaron pairs. Interestingly, in the oligomer we observe a lifetime of polaron pairs which is one order of magnitude longer. We suggest that this behavior results from the intermolecular nature of polaron pairs in oligomers. The study excludes the presence of carrier multiplication in these materials and highlights new aspects in the photophysics of donor-acceptor small molecules when compared to polymers. The former are identified as promising materials for efficient organic photovoltaics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available