4.8 Article

Universal Correlation between Fibril Width and Quantum Efficiency in Diketopyrrolopyrrole-Based Polymer Solar Cells

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 50, Pages 18942-18948

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja4101003

Keywords

-

Funding

  1. European Commission [261936, 287818]
  2. Europees Fonds voor Regionale Ontwikkeling (EFRO) in the Interreg IV-A project Organext
  3. Ministry of Education, Culture and Science [024.001.035]

Ask authors/readers for more resources

For a series of six diketopyrrolopyrrole (DPP)-based conjugated polymers, we establish a direct correlation between their external quantum efficiencies (EQE) in organic solar cells and the fibrillar microstructure in the blend. The polymers consist of electron-deficient DPP units, carrying long branched 2'-decyltetradecyl (DT) side chains for solubility, that alternate along the main chain with electron-rich aromatic segments comprising benzene, thiophene, or fined aromatic rings. The high molecular weight DT-DPP polymers were incorporated in bulk heterojunction solar cells with [6,6]-phenyl-C-71-butyric acid methyl ester ([70]PCBM) as acceptor. The morphology of the DT-DPP:[70]PCBM blends is characterized by a semicrystalline fibrillar microstructure with fibril widths between 4.5 and 30 nm as evidenced from transmission electron microscopy. A clear, correlation is found between the widths of the fibrils and the EQE for photon to electron conversion. The highest EQEs (60%) and power conversion efficiencies (7.1%) are obtained for polymers with fibril widths less than 12 nm. For blends with fibrils wider than 12 nm, the EQE is low because exciton diffusion becomes limiting for charge generation. Interestingly, the correlation found here matches with previous data on related DPP-based polymers. This suggests that for this class of materials the relation between fiber width and EQE is universal. The fiber width is largely correlated with the solubility of the polymers, with less soluble DPP-based polymers giving narrower fibrils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available