4.8 Article

Colocalized Delivery of Adjuvant and Antigen Using Nanolipoprotein Particles Enhances the Immune Response to Recombinant Antigens

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 135, Issue 6, Pages 2044-2047

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja3063293

Keywords

-

Funding

  1. LLNL [DE-AC52-07NA27344, LDRD 09-LW-077, LDRD 11-ERD-016]

Ask authors/readers for more resources

Subunit antigen-based vaccines can provide a number of important benefits over traditional vaccine candidates, such as overall safety. However, because of the inherently low immunogenicity of these antigens, methods for colocalized delivery of antigen and immunostimulatory molecules (i.e., adjuvants) are needed. Here we report a robust nanolipoprotein particle (NLP)-based vaccine delivery platform that facilitates the codelivery of both subunit antigens and adjuvants. Ni-chelating NLPs (NiNLPs) were assembled to incorporate the amphipathic adjuvants monophosphoryl lipid A and cholesterol-modified CpG oligodeoxynucleotides, which can bind His-tagged protein antigens. Colocalization of antigen and adjuvant delivery using the NiNLP platform resulted in elevated antibody production against His-tagged influenza hemagglutinin 5 and Yersinia pestis LcrV antigens. Antibody titers in mice immunized with the adjuvanted NLPs were 5-10 times higher than those observed with coadministration formulations and nonadjuvanted NiNLPs. Colocalized delivery of adjuvant and antigen provides significantly greater immune stimulation in mice than coadministered formulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available