4.8 Article

Mechanisms of pH-Dependent Activity for Water Oxidation to Molecular Oxygen by MnO2 Electrocatalyst

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 3, Pages 1519-1527

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja206511w

Keywords

-

Funding

  1. Japan Science and Technology Agency (JST)
  2. Ministry of Education, Culture, Sports, Science, Technology (MEXT) of the Japanese Government [21750186]
  3. Canon Foundation
  4. Japan Society for Promotion of Science (JSPS) [21.9161]
  5. Grants-in-Aid for Scientific Research [21750186, 09J09161] Funding Source: KAKEN

Ask authors/readers for more resources

Manganese oxides function as efficient electrocatalysts for water oxidation to molecular oxygen in strongly alkaline conditions, but are inefficient at neutral pH. To provide new insight into the mechanism underlying the pH-dependent activity of the electrooxidation reaction, we performed UV-vis spectroelectrochemical detection of the intermediate species for water oxidation by a manganese oxide electrode. Layered manganese oxide nanoparticles, delta-MnO2 (K-0.17[Mn0.904+Mn0.073+square 0.03]O-2 center dot 0.53H(2)O) deposited on fluorine-doped tin oxide electrodes were shown to catalyze water oxidation at pH from 4 to 13. At this pH range, a sharp rise in absorption at 510 nm was observed with a concomitant increase of anodic current for O-2 evolution. Using pyrophosphate as a probe molecule, the 510 nm absorption was attributable to Mn3+ on the surface of delta-MnO2. The onset potential of the water oxidation current was constant at approximately 1.5 V vs SHE from pH 4 to pH 8, but sharply shifted to negative at pH > 8. Strikingly, this behavior was well reproduced by the pH dependence of the onset of 510 nm absorption, indicating that Mn3+ acts as the precursor of water oxidation. Mn3+ is unstable at pH < 9 due to the dispropottionation reaction resulting in the formation of Mn2+ and Mn4+, whereas it is effectively stabilized by the comproportionation of Mn2+ and Mn4+ in alkaline conditions. Thus, the low activity of manganese oxides for water oxidation under neutral conditions is most likely due to the inherent instability of Mn3+, whose accumulation at the surface of catalysts requires the electrochemical oxidation of Mn2+ at a potential of approximately 1.4 V. This new model suggests that the control of the disproportionation and comproportionation efficiencies of Mn3+ is essential for the development of Mn catalysts that afford water oxidation with a small overpotential at neutral pH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available