4.8 Article

Nanofluidic Ion Transport through Reconstructed Layered Materials

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 40, Pages 16528-16531

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja308167f

Keywords

-

Funding

  1. Indo-US Science & Technology Forum (IUSSTF)
  2. Alfred P. Sloan Foundation

Ask authors/readers for more resources

Electrolytes confined in nanochannels with characteristic dimensions comparable to the Debye length show transport behaviors deviating from their bulk counterparts. Fabrication of nanofluidic devices typically relies on expensive lithography techniques or the use of sacrificial templates with sophisticated growth and processing steps. Here we demonstrate an alternative approach where unprecedentedly massive arrays of nanochannels are readily formed by restacking exfoliated sheets of layered materials, such as graphene oxide (GO). Nanochannels between GO sheets are successfully constructed as manifested by surface-charge-governed ion transport for electrolyte concentrations up to 50 mM. Nanofluidic devices based on reconstructed layer materials have distinct advantages such as low cost, facile fabrication, ease of scaling up to support high ionic currents, and flexibility. Given the rich chemical, physical, and mechanical properties of layered materials, they should offer many exciting new opportunities for studying and even manufacturing nanofluidic devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available