4.8 Article

Computational Study of Anomalous Reduction Potentials for Hydrogen Evolution Catalyzed by Cobalt Dithiolene Complexes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 37, Pages 15253-15256

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja306857q

Keywords

-

Funding

  1. NSF Center for Chemical Innovation [CHE-0802907]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0802907] Funding Source: National Science Foundation

Ask authors/readers for more resources

The design of efficient hydrogen-evolving catalysts based on earth-abundant materials is important for developing alternative renewable energy sources. A series of four hydrogen-evolving cobalt dithiolene complexes in acetonitrile-water solvent is studied with computational methods. Co(mnt)(2) (mnt = maleonitrile-2,3-dithiolate) has been shown experimentally to be the least active electrocatalyst (i.e., to produce H-2 at the most negative potential) in this series, even though it has the most strongly electron-withdrawing substituents and the least negative Co-III/II reduction potential. The calculations provide an explanation for this anomalous behavior in terms of protonation of the sulfur atoms on the dithiolene ligands after the initial Co-III/II reduction. One fewer sulfur atom is protonated in the Co-II(mnt)(2) complex than in the other three complexes in the series. As a result, the subsequent Co-II/I reduction step occurs at the most negative potential for Co(mnt)(2). According to the proposed mechanism, the resulting Co-1 complex under-goes intramolecular proton transfer to form a catalytically active Co-III-hydride that can further react to produce H-2. Understanding the impact of ligand protonation on electrocatalytic activity is important for designing more effective electrocatalysts for solar devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available