4.8 Article

Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a pH-Assisted and Surfactant-Free Route

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 17, Pages 7266-7269

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja3014055

Keywords

-

Funding

  1. University of Waterloo
  2. Canadian Foundation for Innovation
  3. Ontario Ministry of Research Innovation
  4. Canadian Institutes of Health Research
  5. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

The attachment of thiolated DNA to gold nanoparticles (AuNPs) has enabled many landmark works in nanobiotechnology. This conjugate chemistry is typically performed using a salt-aging protocol where, in the presence of an excess amount of DNA, NaCl is gradually added to increase DNA loading over 1-2 days. To functionalize large AuNPs, surfactants need to be used, which may generate difficulties for downstream biological applications. We report herein a novel method using a pH 3.0 citrate buffer to complete the attachment process in a few minutes. More importantly, it allows for quantitative DNA adsorption, eliminating the need to quantify the number of adsorbed DNA and allowing the adsorption of multiple DNAs with different sequences at predetermined ratios. The method has been tested for various DNAs over a wide range of AuNP sizes. Our work suggests a synergistic effect between pH and salt in DNA attachment and reveals the fundamental kinetics of AuNP aggregation versus DNA adsorption, providing a novel means to modulate the interactions between DNA and AuNPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available