4.8 Article

Efficient Anodic and Direct Phenol-Arene C,C Cross-Coupling: The Benign Role of Water or Methanol

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 7, Pages 3571-3576

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja211005g

Keywords

-

Funding

  1. Chemistry at Spin Centers (DFG) [SFB 813]

Ask authors/readers for more resources

C,C cross-coupling reactions for the synthesis of nonsymmetrical biaryls represent one of the most significant transformations in contemporary organic chemistry. A variety of useful synthetic methods have been developed in recent decades, since nonsymmetrical biaryls play an evident role in natural product synthesis, as ligand systems in homogeneous catalysis and materials science. Transformation of simple arenes by direct C,H activation belongs to the cutting-edge strategies for creating biaryls; in particular the 2-fold C,H activation is of significant interest. However, in most examples very costly noble metal catalysts, ligand systems, and significant amount of waste-producing oxidants are required. Electrochemical procedures are considered as inherently green methods, because only electrons are required and therefore, no reagent waste is produced. Here, we report a metal-free electrochemical method for cross-coupling between phenols and arenes using boron-doped diamond (BDD) anodes in fluorinated media. Our sustainable approach requires no leaving functionalities. Employing water or methanol as mediator represents the key improvement for achieving nonsymmetrical biaryls with superb selectivity and synthetic attractive yields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available