4.8 Article

Reduced Graphene Oxide Conjugated Cu2O Nanowire Mesocrystals for High-Performance NO2 Gas Sensor

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 10, Pages 4905-4917

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja211683m

Keywords

-

Funding

  1. Singapore National Research Foundation under CRP [NRF-CRP-4-2008-03]
  2. National Natural Science Foundation of China (NSFC) [21006079]
  3. EPSRC [EP/H001220/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/H001220/1] Funding Source: researchfish

Ask authors/readers for more resources

Reduced graphene oxide (rGO)-conjugated Cu2O nanowire mesocrystals were formed by nonclassical crystallization in the presence of GO and o-anisidine under hydrothermal conditions. The resultant mesocrystals are comprised of highly anisotropic nanowires as building blocks and possess a distinct octahedral morphology with eight {111} equivalent crystal faces. The mechanisms underlying the sequential formation of the mesocrystals are as follows: first, GO-promoted agglomeration of amorphous spherical Cu2O nanoparticles at the initial stage, leading to the transition of growth mechanism from conventional ion-by-ion growth to particle-mediated crystallization; second, the evolution of the amorphous microspheres into hierarchical structure, and finally to nanowire mesocrystals through mesoscale transformation, where Ostwald ripening is responsible for the growth of the nanowire building blocks; third, large-scale self-organization of the mesocrystals and the reduction of GO (at high GO concentration) occur simultaneously, resulting in an integrated hybrid architecture where porous three-dimensional (3D) framework structures interspersed among two-dimensional (2D) rGO sheets. Interestingly, super-mesocrystals formed by 3D oriented attachment of mesocrystals are also formed judging from the voided Sierpinski polyhedrons observed. Furthermore, the interior nanowire architecture of these mesocrystals can be kinetically controlled by careful variation of growth conditions. Owing to high specific surface area and improved conductivity, the rGO-Cu2O mesocrystals achieved a higher sensitivity toward NO2 at room temperature, surpassing the performance of standalone systems of Cu2O nanowires networks and rGO sheets. The unique characteristics of rGO-Cu2O mesocrystal point to its promising applications in ultrasensitive environmental sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available