4.8 Article

Direct Evidence of Active-Site Reduction and Photodriven Catalysis in Sensitized Hydrogenase Assemblies

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 27, Pages 11108-11111

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja3042367

Keywords

-

Funding

  1. U.S. Army Research Laboratory
  2. U.S. Army Research Office [54635CH]
  3. NIH [GM068036]

Ask authors/readers for more resources

We report photocatalytic H-2 production by hydrogenase (H(2)ase)-quantum dot (QD) hybrid assemblies. Quenching of the CdTe exciton emission was observed, consistent with electron transfer from the quantum dot to H(2)ase. GC analysis showed light-driven H-2 production in the presence of a sacrificial electron donor with an efficiency of 4%, which is likely a lower limit for these hybrid systems. FTIR spectroscopy was employed for direct observation of active-site reduction in unprecedented detail for photodriven H(2)ase catalysis with sensitivity toward both H(2)ase and the sacrificial electron donor. Photosensitization with Ru(bpy)(3)(2+) showed distinct FTIR photoreduction properties, generating all of the states along the steady-state catalytic cycle with minimal H-2 production, indicating slow, sequential one-electron reduction steps. Comparing the H(2)ase activity and FTIR results for the two systems showed that QDs bind more efficiently for electron transfer and that the final enzyme state is different for the two sensitizers. The possible origins of these differences and their implications for the enzymatic mechanism are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available