4.8 Article

Groove Binding Mechanism of Ionic Liquids: A Key Factor in Long-Term Stability of DNA in Hydrated Ionic Liquids?

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 50, Pages 20330-20339

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja304519d

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India
  2. University Grants Commission, Government of India

Ask authors/readers for more resources

Nucleic acid sample storage is of paramount importance in biotechnology and forensic sciences. Very recently, hydrated ionic liquids (ILs) have been identified as ideal media for long-term DNA storage. Hence, understanding the binding characteristics and molecular mechanism of interactions of Its with DNA is of both practical and fundamental interest. Here, we employ molecular dynamics simulations and spectroscopic experiments to unravel the key factors that stabilize DNA in hydrated ILs. Both simulation and experimental results show that DNA maintains the native B-conformation in Its. Simulation results further suggest that, apart from the electrostatic association of IL cations with the DNA backbone, groove binding of IL cations through hydrophobic and polar interactions contributes significantly to DNA stability. Circular dichroism spectral measurements and fluorescent dye displacement assay confirm the intrusion of IL molecules into the DNA minor groove. Very interestingly, the IL ions were seen to disrupt the water cage around DNA, including the spine of hydration in the minor groove. This partial dehydration by ILs likely prevents the hydrolytic reactions that denature DNA and helps stabilize DNA for the long term. The detailed understanding of IL DNA interactions provided here could guide the future development of novel ILs, specific for nucleic acid solutes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available