4.8 Article

Activity-Based Probe for Histidine Kinase Signaling

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 22, Pages 9150-9153

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja3041702

Keywords

-

Funding

  1. NIH [R00GM82983, DP2OD008592]
  2. Pew Biomedical Scholar Award
  3. Indiana University Quantitative and Chemical Biology Training

Ask authors/readers for more resources

Bacterial two-component systems (TCSs) are signaling pathways composed of two proteins: a histidine kinase (HK) and a response regulator (RR). Upon stimulation, the HK autophosphorylates at a conserved histidine. The phosphoryl group is subsequently transferred to an aspartate on an RR, eliciting an adaptive response, often up- or downregulation of gene expression. TCS signaling controls many functions in bacteria, including development, virulence, and antibiotic resistance, making the proteins involved in these systems potential therapeutic targets. Efficient methods for the profiling of HKs are currently lacking. For direct readout of HK activity, we sought to design a probe that enables detection of the phosphotransfer event; however, analysis of the phosphohistidine species is made difficult by the instability of the P-N bond. We anticipated that use of a gamma-thiophosphorylated ATP analogue, which would yield a thiophosphorylated histidine intermediate, could overcome this challenge. We determined that the fluorophore-conjugated probe, BODIPY-FL-ATP gamma S, labels active HK proteins and is competitive for the ATP binding site. This activity-based probe provides a new strategy for analysis of TCSs and other HK-mediated processes and will facilitate both functional studies and inhibitor identification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available