4.8 Article

Attach, Remove, or Replace: Reversible Surface Functionalization Using Thiol-Quinone Methide Photoclick Chemistry

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 20, Pages 8408-8411

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja302970x

Keywords

-

Funding

  1. NSF [CHE-0842590]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1213789, 0842590] Funding Source: National Science Foundation

Ask authors/readers for more resources

A very facile reaction between photochemically generated o-naphthoquinone methides (oNQMs) and thiols is employed for reversible light-directed surface derivatization and patterning. A thiol-functionalized glass slide is covered with an aqueous solution of a substrate conjugated to 3-(hydroxymethyl)-2-naphthol (NQMP). Subsequent irradiation via shadow mask results in the efficient conversion of NQMP into reactive oNQM species in the exposed areas. The latter react with thiol groups on the surface, producing thioether links between the substrate and the surface. Unreacted oNQM groups are rapidly hydrated to regenerate NQMP. The short lifetime of oNQM in aqueous solution prevents its migration from the site of irradiation, thus allowing for the spatial control of the surface derivatization. A two-step procedure was employed for protein patterning: photobiotinylation of the surface with an NQMP biotin conjugate followed by staining with FITC avidin. The orthogonality of oNQM-thiol and azide click chemistry allowed for the development of a sequential click strategy, which might be useful for the immobilization of light-sensitive compounds. The thioether linkage produced by the reaction of oNQM and a thiol is stable under ambient conditions but can be cleaved by UV irradiation, regenerating the free thiol. This feature allows for the removal or replacement of immobilized substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available