4.8 Article

A Convenient Method for Preparing Alkyl-Functionalized Silicon Nanocubes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 134, Issue 34, Pages 13958-13961

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja3061497

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)
  2. Canada Foundation for Innovation (CFI)
  3. Alberta Science and Research Investment Program (ASRIP)
  4. University of Alberta Department of Chemistry

Ask authors/readers for more resources

The first solid-state synthesis of diamond structure silicon nanocube structures with edge lengths of 8-15 nm is reported. It is well-established that controlled high-temperature processing of hydrogen silsesquioxane produces exceptionally well-defined pseudospherical silicon nanocrystals. However, only a small number of accounts outlining shape-controlled synthesis have appeared. We report here that, upon prolonged annealing in an oxide matrix, nanooystal surfaces thermodynamically self-optimize, yielding particles with cubic geometries. Surface functionalization of the resulting nanocubes is readily achieved via thermal hydrosilylation. Discussion will include description of the synthetic procedure, comprehensive material characterization, and the factors that lead to the formation of cubic structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available