4.8 Article

Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 30, Pages 11810-11815

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja204504w

Keywords

-

Funding

  1. French National Agency (ANR) [ANR-08-NANO-025]

Ask authors/readers for more resources

Focusing on the use of nanophosphors for in vivo imaging and diagnosis applications, we used thermally stimulated luminescence (TSL) measurements to study the influence of trivalent lanthanide Ln(3+) (Ln = Dy, Pr, Ce, Nd) electron traps on the optical properties of Mn(2+)-doped diopside-based persistent luminescence nanoparticles. This work reveals that Pr(3+) is the most suitable Ln(3+) electron trap in the diopside lattice, providing optimal trap depth for room temperature afterglow and resulting in the most intense luminescence decay curve after X-ray irradiation. This luminescence dependency toward the electron trap is maintained through additional doping with Eu(2+), allowing UV-light excitation, critical for bioimaging applications in living animals. We finally identify a novel composition (CaMgSi(2)O(6):Eu(2+),Mn(2+),Pr(3+)) for in vivo imaging, displaying a strong near-infrared afterglow centered of such persistent luminescence nanoparticles in mice allows not only on 685 nm, and present evidence that intravenous injection improved but highly sensitive detection through living tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available