4.8 Article

Biocompatible Functionalization of Polymersome Surfaces: A New Approach to Surface Immobilization and Cell Targeting Using Polymersomes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 12, Pages 4476-4483

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja110275f

Keywords

-

Funding

  1. Swiss National Science Foundation
  2. NCCR Nanosciences
  3. University of Basel
  4. Marie-Curie Intra-European Fellowhip

Ask authors/readers for more resources

Vesicles assembled from amphiphilic block copolymers represent promising nanomaterials for applications that include drug delivery and surface functionalization. One essential requirement to guide such polymersomes to a desired site in vivo is conjugation of active, targeting ligands to the surface of preformed self-assemblies. Such conjugation chemistry must fulfill criteria of efficiency and selectivity, stability of the resulting bond, and biocompatibility. We have here developed a new system that achieves these criteria by simple conjugation of 4-formylbenzoate (4FB) functionalized polymersomes with 6-hydrazinonicotinate acetone hydrazone (HyNic) functionalized antibodies in aqueous buffer. The number of available amino groups on the surface of polymersomes composed of poly-(dimethylsiloxane)-block-poly(2-methyloxazoline) diblock copolymers was investigated by reacting hydrophilic succinimidyl-activated fluorescent dye with polymersomes and evaluating the resulting emission intensity. To prove attachment of biomolecules to polymersomes, HyNic functionalized enhanced yellow fluorescent protein (eYFP) was attached to 4FB functionalized polymersomes, resulting in an average number of 5 eYFP molecules per polymersome. Two different polymersome antibody conjugates were produced using either antibiotin IgG or trastuzumab. They showed specific targeting toward biotin-patterned surfaces and breast cancer cells. Overall, the polymersome ligand platform appears promising for therapeutic and diagnostic use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available