4.8 Article

Molecular Mechanochemistry: Low Force Switch Slows Enzymatic Cleavage of Human Type I Collagen Monomer

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 11, Pages 4073-4078

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja110098b

Keywords

-

Funding

  1. National Institutes of Health [1 R21 AR053551-01]
  2. NCI
  3. NSF [0504331]
  4. Division Of Graduate Education
  5. Direct For Education and Human Resources [0504331] Funding Source: National Science Foundation

Ask authors/readers for more resources

In vertebrate animals, fibrillar collagen accumulates, organizes, and persists in structures which resist mechanical force. This antidissipative behavior is possibly due to a mechanochemical force-switch which converts collagen from enzyme-susceptible to enzyme-resistant. Degradation experiments on native tissue and reconstituted fibrils suggest that collagen/enzyme kinetics favor the retention of loaded collagen. We used a massively parallel, single molecule, mechanochemical reaction assay to demonstrate that the effect is derivative of molecular mechanics. Tensile loads higher than 3 pN dramatically reduced (10x) the enzymatic degradation rate of recombinant human type I collagen monomers by Clostridium histolyticum compared to unloaded controls. Because bacterial collagenase accesses collagen at multiple sites and is an aggressive cleaver of the collagen triple helical domain, the results suggest that collagen molecular architecture is generally more stable when mechanically strained in tension. Thus the tensile mechanical state of collagen monomers is likely to be correlated to their longevity in tissues. Further, strain-actuated molecular stability of collagen may constitute the fundamental basis of a smart structural mechanism which enhances the ability of animals to place, retain, and load-optimize material in the path of mechanical forces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available