4.8 Article

Thieno[3,4-c]pyrrole-4,6-dione-Based Polymer Semiconductors: Toward High-Performance, Air-Stable Organic Thin-Film Transistors

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 34, Pages 13685-13697

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja205398u

Keywords

-

Funding

  1. ONR [N00014-05-1-0766]
  2. AFOSR [FA9550-08-1-0331]
  3. Polyera Corp.
  4. NSF-MRSEC through the Northwestern University Materials Research Science and Engineering Center [DMR-0520513]
  5. European Community [234808]

Ask authors/readers for more resources

We report a new,p-type semiconducting polymer family based on the thieno[3,4-c]pyrrole-4,6-dione (TPD) building block, which exhibits good processability as well as good mobility and lifetime stability in thin-film transistors (TFTs). TPD homopolymer P1 was synthesized via Yamamoto coupling, whereas copolymers P2-P8 were synthesized via Stile coupling. All of these polymers were characterized by chemical analysis as well as thermal analysis, optical spectroscopy, and cyclic voltammetry. P2-P7 have lower-lying HOMOs than does P3HT by 0.24-0.57 eV, depending on the donor counits, and exhibit large oscillator strengths in the visible region with similar optical band gaps throughout the series (similar to 1.80 eV). The electron-rich character of the dialkoxybithiophene counits in P8 greatly compresses the band gap, resulting in the lowest E-g(opt) in the series (1.66 eV), but also raising the HOMO energy to -5.11 eV. Organic thin-film transistor (OTFT) electrical characterization indicates that device performance is very sensitive to the oligothiophene conjugation length, but also to the solubilizing side chain substituEnts (length, positional pattern). The corresponding thin-film microstructures and morphologies were investigated by XRD and AFM to correlate with the OTFT performance. By strategically varying the oligothiophene donor conjugation length and optimizing the solubilizing side chains, a maximum OTFT hole mobility of similar to 0.6 cm(2) V-1 s(-1) is achieved for P4-based devices. OTFT environmental (storage) and operational (bias) stability in ambient was investigated, and enhanced performance is observed due to the low-lying HOMOs. These results indicate that the TPD is an excellent building block for constructing high-performance polymers for p-type transistor applications due to the excellent processability, substantial hole mobility, and good device stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available