4.8 Article

Synergetic Effect of Surface and Subsurface Ni Species at Pt-Ni Bimetallic Catalysts for CO Oxidation

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 6, Pages 1978-1986

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja109483a

Keywords

-

Funding

  1. National Natural Science Foundation of China [20733008, 2087314, 11079005]
  2. Ministry of Science and Technology of China
  3. Chinese Academy of Sciences
  4. Science and Technology Commission of Shanghai Municipality of China [09JC1417100]

Ask authors/readers for more resources

Various well-defined Ni-Pt(111) model catalysts are constructed at atomic-level precision under ultra-high-vacuum conditions and characterized by X-ray photoelectron spectroscopy and scanning tunneling microscopy. Subsequent studies of CO oxidation over the surfaces show that a sandwich surface (NiO(1-x)/Pt/Ni/Pt(111)) consisting of both surface Ni oxide nanoislands and subsurface Ni atoms at a Pt(111) surface presents the highest reactivity. A similar sandwich structure has been obtained in supported Pt-Ni nanoparticles via activation in H(2) at an intermediate temperature and established by techniques including acid leaching, inductively coupled plasma, and X-ray adsorption near-edge structure. Among the supported Pt-Ni catalysts studied, the sandwich bimetallic catalysts demonstrate the highest activity to CO oxidation, where 100% CO conversion occurs near room temperature. Both surface science studies of model catalysts and catalytic reaction experiments on supported catalysts illustrate the synergetic effect of the surface and subsurface Ni species on the CO oxidation, in which the surface Ni oxide nanoislands activate O(2), producing atomic O species, while the subsurface Ni atoms further enhance the elementary reaction of CO oxidation with O.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available