4.8 Article

Molecular Explanation for Why Talc Surfaces Can Be Both Hydrophilic and Hydrophobic

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 50, Pages 20521-20527

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja208687a

Keywords

-

Funding

  1. NIH [R01-GM078102-04]
  2. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available