4.8 Article

Photocontrol over the Disorder-to-Order Transition in Thin Films of Polystyrene-block-poly(methyl methacrylate) Block Copolymers Containing Photodimerizable Anthracene Functionality

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 43, Pages 17217-17224

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja2036964

Keywords

-

Funding

  1. Department of Energy, Office of Basic Energy Science [DE-FG02-02ER45998]
  2. National Science Foundation at the University of Massachusetts, Amherst [DMR-0213695]
  3. National Science Foundation [DMR-0454672]
  4. National Institute of Standards and Technology, U.S. Department of Commerce
  5. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy
  6. U.S. Department of Energy (DOE) [DE-FG02-02ER45998] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Reversible photocontrol over the ordering transition of block copolymers (BCPs) from a disordered state to an ordered state, namely the disorder-to-order transition (DOT), can be used to create long-range ordered nanostructures in self-assembled BCPs over macroscopic distances by photocombing, similar to the classic zone refining used to produce highly pure, large single crystals. Here, we have designed and synthesized an anthracene-functionalized tri-BCP containing deuterated polystyrene (d(8)-PS) and poly(methyl methacrylate) (PMMA) blocks, as well as a short middle block of poly(2-hydroxyethyl methacrylates) (PHEMA) that is randomly functionalized by anthracene. This tri-BCP maintains the order-to-disorder transition-type phase behavior of its parent d(8)-PS-b-PMMA di-BCPs. Under 365 nm UV irradiation, the junction between d(8)-PS and PMMA blocks is photocoupled through the anthracene photodimers, leading to a significant increase in the total molecular weight of the tri-BCP. As a consequence, when the tri-BCP is phase-mixed but close to the boundary of the ordering transition, it undergoes the DOT, as evidenced by small-angle neutron scattering and transmission electron microscopy. The tri-BCP could be reversibly brought through the DOT in thin films by taking advantage of photodimerization and thermal dissociation of anthracene. Currently, anthracene-functionalized d(8)-PS-b-PMMA BCP is one of the most promising candidates for the photocombing process to promote long-range laterally ordered nanostructures over macroscopic distances in a noninvasive manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available