4.8 Article

Divergent Synthesis and Chemical Reactivity of Bicyclic Lactone Fragments of Complex Rearranged Spongian Diterpenes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 43, Pages 17494-17503

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja207727h

Keywords

-

Funding

  1. NIH Neurological Disorders & Stroke Institute [NS-12389]
  2. NIH National Institutes of General Medical Sciences [GM-098601]
  3. NIH [CA-138084, GM-079937]
  4. UC Irvine Training Program in Cancer Biology [5 T32 CA009054-34]
  5. Amgen
  6. Merck

Ask authors/readers for more resources

The synthesis and direct comparison of the chemical reactivity of the two highly oxidized bicyclic lactone fragments found in rearranged spongian diterpenes (8-substituted 6-acetoxy-2,7-dioxabicyclo [3.2.1]octan-3-one and 6-substituted 7-acetoxy-2,8-dioxabicyclo[3.3.0]octan-3-one) are reported. Details of the first synthesis of the 6-acetoxy-2,7-dioxabicyclo[3.2.1]octan-3-one ring system, including an examination of several possibilities for the key 0 0 bridging cyclization reaction, are described. In addition, the first synthesis of 7-acetoxy-2,8-dioxabicyclo [3.3.0] octanones containing quaternary carbon substituents at C6 is disclosed. Aspects of the chemical reactivity and Golgi-modifying properties of these bicyclic lactone analogs of rearranged spongian diterpenes are also reported. Under both acidic and basic conditions, 8-substituted 2,7-dioxabicyclo[3.2.1]octanones are converted to 6-substituted-2,8-dioxabicyclo[3.3.0]octanones. Moreover, these dioxabicyclic lactones react with primary amines and lysine side chains of lysozyme to form substituted pyrroles, a conjugation that could be responsible for the unique biological properties of these compounds. These studies demonstrate that acetoxylation adjacent to the lactone carbonyl group, in either the bridged or fused series, is required to produce fragmented Golgi membranes in the pericentriolar region that is characteristic of macfarlandin E.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available