4.8 Article

Searching and Optimizing Structure Ensembles for Complex Flexible Sugars

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 39, Pages 15252-15255

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja205251j

Keywords

-

Funding

  1. NIH [GM45811]
  2. Roy J. Carver Charitable Trust [05-2182]

Ask authors/readers for more resources

NMR restrictions are suitable to specify the geometry of a molecule when a single well-defined global free energy minimum exists that is significantly lower than other local minima. Carbohydrates are quite flexible, and therefore, NMR observables do not always correlate with a single conformer but instead with an ensemble of low free energy conformers that can be accessed by thermal fluctuations. In this communication, we describe a novel procedure to identify and weight the contribution to the ensemble of local minima conformers based on comparison to residual dipolar couplings (RDCs) or other NMR observables, such as scalar couplings. A genetic algorithm is implemented to globally minimize the R factor comparing calculated RDCs to experiment. This is done by optimizing the weights of different conformers derived from the exhaustive local minima conformational search program, fast sugar structure prediction software (FSPS). We apply this framework to six human milk sugars, LND-1, LNF-1, LNF-2, LNF-3, LNnT, and LNT, and are able to determine corresponding population weights for the ensemble of conformers. Interestingly, our results indicate that in all cases the RDCs can be well represented by only a few most important conformers. This confirms that several, but not all of the glycosidic linkages in histo-blood group epitopes are quite rigid.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available