4.8 Article

Why 11-cis-Retinal? Why Not 7-cis-, 9-cis-, or 13-cis-Retinal in the Eye?

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 47, Pages 19052-19055

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja208789h

Keywords

-

Funding

  1. National Institutes of Health [R01EY016400]
  2. Core Research for Evolutional Science and Technology (CREST) from JST

Ask authors/readers for more resources

One of the basic and unresolved puzzles in the chemistry of vision concerns the natural selection of 11-cis-retinal as the light-sensing chromophore in visual pigments. A detailed computational examination of the structure, stability, energetics, and spectroscopy of 7-cis-, 9-cis-, 11-cis-, and 13-cis-retinal isomers in vertebrate (bovine, monkey) and invertebrate (squid) visual pigments was carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The results show that the electrostatic interaction between retinal and opsin dominates the natural selection of 11-cis-retinal over other cis isomers in the dark state. In all of the pigments, 9-cis-retinal was found to be only slightly higher in energy than 11-cis-retinal, which provides strong evidence for the presence of 9-cis-rhodopsin in nature. 7-cis-Retinal is suggested to be an upside-down version of the all-trans isomer because the structural rearrangements observed for 7-cis-rhodopsin from squid were found to be very similar to those for squid bathorhodopsin. The progressive red shift in the calculated absorption wavelength (lambda(max)) (431, 456, 490, and 508 nm for the 7-cis-, 9-cis-, 11-cis-, and 13-cis-retinal isomers) is due to the decrease in bond length alternation of the retinal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available