4.8 Article

Room Temperature Water Splitting at the Surface of Magnetite

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 133, Issue 32, Pages 12650-12655

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja203432e

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001058]

Ask authors/readers for more resources

An array of surface science measurements has revealed novel water adsorption behavior at the Fe3O4(001) surface. Following room temperature exposure to water, a low coverage of hydrogen atoms is observed, with no associated water hydroxyl group. Mild annealing of the hydrogenated surface leads to desorption of water via abstraction of surface oxygen atoms, leading to a reduction of the surface. These results point to an irreversible splitting of the water molecule. The observed phenomena are discussed in the context of recent DFT calculations (Mulakaluri, N.; Pentcheva, R.; Scheffier, M. J. Phys. Chem. C 2010, 114, 11148), which show that the Jahn-Teller distorted surface isolates adsorbed H in a geometry that could kinetically hinder recombinative desorption. In contrast, the adsorption geometry facilitates interaction between water hydroxyl species, which are concluded to leave the surface following a reactive desorption process, possibly via the creation of O-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available