4.8 Article

Light-Harvesting Conjugated Microporous Polymers: Rapid and Highly Efficient Flow of Light Energy with a Porous Polyphenylene Framework as Antenna

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 19, Pages 6742-6748

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja100327h

Keywords

-

Funding

  1. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST)

Ask authors/readers for more resources

The molecular design of light-harvesting antennae requires not only the segregation of a large number of chromophore units in a confined nanospace but also the cooperation of these units in achieving highly efficient energy transduction. This article describes the synthesis and functions of a polyphenylene-based conjugated microporous polymer (PP-CMP). PP-CMP was recently designed and synthesized by Suzuki polycondensation reaction and used as an antenna for the noncovalent construction of a light-harvesting system. In contrast to linear polyphenylene, PP-CMP consists of conjugated three-dimensional polyphenylene scaffolds and holds inherent porous structure with uniform pore size (1.56 nm) and large surface area (1083 m(2) g(-1)). It emits blue photoluminescence, is capable of excitation energy migration over the framework, and enables rapid transportation of charge carrier with intrinsic mobility as high as 0.04 cm(2) V-1 s(-1). The microporous structure of PP-CMP allows for the spatial confinement of energy-accepting coumarin 6 molecules in the pores and makes the high-throughput synthesis of light-harvesting systems with designable donor-acceptor compositions possible. Excitation of the PP-CMP skeleton leads to brilliant green emission from coumarin 6, with an intensity 21-fold as high as that upon direct excitation of coumarin 6 itself, while the fluorescence from PP-CMP itself is wholly quenched as a result of energy transfer from the light-harvesting PP-CMP framework to coumarin 6. The PPCMP skeleton is highly cooperative, with an average of 176 phenylene units working together to channel the excitation energy to one coumarin 6 molecule, and features the energy-transfer process with quick, efficient, and vectorial character. These unique characteristics clearly originate from the conjugated porous structure and demonstrate the usefulness of CMPs in the exploration of a-electronic functions, in addition to their gas adsorption properties thus far reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available