4.8 Article

A Combined Experimental-Computational Investigation of Carbon Dioxide Capture in a Series of Isoreticular Zeolitic Imidazolate Frameworks

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 32, Pages 11006-11008

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja104035j

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001342]

Ask authors/readers for more resources

A series of five zeolitic imidazolate frameworks (ZIFs) have been synthesized using zinc(II) acetate and five different 4,5-functionalized imidazole units, namely ZIF-25, -71, -93, -96, and -97. These 3-D porous frameworks have the same underlying topology (RHO) with Brunauer-Emmet-Teller surface areas ranging from 564 to 1110 m(2)/g. The only variation in structure arises from the functional groups that are directed into the pores of these materials, which include -CH3, -OH, -Cl, -CN, -CHO, and NH2; therefore these 3-D frameworks are ideal for the study of the effect of functionality on CO2 uptake. Experimental results show CO2 uptake at approximately 800 Torr and 298 K ranging from 0.65 mmol g(-1) in ZIF-71 to 2.18 mmol g(-1) in ZIF-96. Molecular modeling calculations reproduce the pronounced dependence of the equilibrium adsorption on functionalization and suggest that polarizability and symmetry of the functionalization on the imidazolate are key factors leading to high CO2 uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available