4.8 Article

Dynamic Investigation of Protein Metal Active Sites: Interplay of XANES and Molecular Dynamics Simulations

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 42, Pages 14901-14909

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja1056533

Keywords

-

Funding

  1. Catholic University
  2. CASPUR
  3. Standard HPC

Ask authors/readers for more resources

The effect of structural disorder on the X-ray absorption near-edge structure (XANES) spectrum of a heme protein has been investigated using the dynamical description of the system derived from molecular dynamics (MD) simulations. The XANES spectra of neuroglobin (Ngb) and carbonmonoxy-neuroglobin (NgbCO) have been quantitatively reproduced, starting from the MD geometrical configurations, without carrying out any optimization in the structural parameter space. These results provide an important experimental validation of the reliability of the potentials used in the MD simulations and accordingly corroborate the consistency of the structural dynamic information on the metal center, related to its biological function. This analysis allowed us to demonstrate that the configurational disorder associated with the distortion of the heme plane and with the different orientations of the axial ligands can affect the XANES features at very low energy. Neglecting configurational disorder in the XANES quantitative analysis of heme proteins is a source of systematic errors in the determination of Fe coordination geometry. The combined use of XANES and MD is a novel strategy to enhance the resolution and reliability of the structural information obtained on metalloproteins, making the combination of these techniques powerful for metalloprotein investigations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available