4.8 Article

Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 42, Pages 14803-14811

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja103738t

Keywords

-

Funding

  1. National Research Foundation of Singapore [NRF-G-CRP 2007-05]
  2. Lee Kuan Yew Endowment Fund [R284-000-070-112]

Ask authors/readers for more resources

In the present study, quantum dot (OD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2(star) effect where the r2(star) relaxivity and r2(star)/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide. The multiphoton fluorescence imaging and cell uptake of QD capped magnetite NRs are also demonstrated using MGH bladder cancer cells. In particular, these QD capped magnetite NRs can escape from endosomes and be released into the cytoplasm. The obtained results from these exploratory experiments suggest that the cell-penetrating OD capped magnetite NRs could be an excellent dual-modality nanoprobe for intracellular imaging and therapeutic applications. This work has shown great potential of the magnetic vortex core based multifunctional nanoparticle as a high performance nanoprobe for biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available