4.8 Article

Hexagonal Superlattice of Chiral Conducting Polymers Self-Assembled by Mimicking β-Sheet Proteins with Anisotropic Electrical Transport

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 132, Issue 34, Pages 12006-12012

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja1036447

Keywords

-

Funding

  1. National Natural Science Foundation of China [20974029]
  2. Ministry of Science and Technology of China [2006CB932100, 2009CB930400]

Ask authors/readers for more resources

An ordered superlattice self-assembled from monodispersed nanostructures can exhibit collective effects of its individual building blocks, a desirable property that gives rise to potential applications. However, no general method for the direct fabrication of superstructures yet exists, especially for superlattices that start from rational-designed functional molecules. Noncovalent interactions are widely used for the self-assembly of biomolecules in nature, such as various superstructures of proteins. Instead of using hydrogen bonds as driving force for the self-assembly of beta-sheet structures of peptides, pi-pi stacking interactions were used in this study to self-assemble conducting polyaniline (PANI) nanostructures and superstructures. Monodispersed crystalline PANI nanorices were prepared by using homochiral PANI as building blocks; these nanorices can further self-assemble into hexagonal microplates aligned shoulder to shoulder. PANI molecules were organized into nanorices via single-handed helical pi-pi stacking, in which the molecular plane was normal to the long axis of the nanorices. Electrical transport measurements showed the anisotropic characteristics of self-assembled nanorices and their superstructures, which were due to the directional transport barrier in the nanorices and the structural defects at the interfaces between neighboring nanorices. As chiral PANI and peptides have similar self-assembly behaviors, the method used in this study is greatly expected to be applicable to other chemical and biochemical building blocks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available